

Projet de fin d'étude

"Conception de machine spéciale "

Etudiant : M. Florian WATELET

Tuteur INSA de Lyon : M. Frédéric THEOULE

Tuteur entreprise : M. Bernard JONDA

Stagiaire IUT : M. Emmanuel DALMONT

26 Juin 2008

Sommaire

- I. Problématique
- II. Structure du projet
- III. La présence d'un stagiaire IUT
- IV. Getting Things Done
- V. Bilan

Problématique

1. Améliorer les capacités de production

- 2. Le risque de paralysie de la production
- 3. Un nouveau cahier des charges

I. Problématique

1. Améliorer les capacités de production

- ✓ Une fabrication unitaire des lames
- √ Travail impossible de l'opérateur en temps masqué
- ✓ Montage unitaire des stores sur leurs cadres

→ Objectif :

- ✓ Permettre le travail en temps masqué
- ✓ Permettre le montage de plusieurs stores en parallèle

. Problématique

- 1. Améliorer les capacités de production
- 2. Le risque de paralysie de la production
- 3. Un nouveau cahier des charges

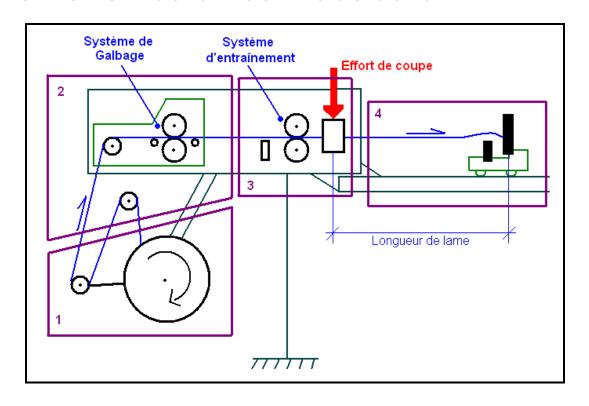
I. Problématique

2. Le risque de paralysie de la production

√ Une seule machine de production des lames

l. Problématique

- 1. Améliorer les capacités de production
- 2. Le risque de paralysie de la production
- 3. Un nouveau cahier des charges



I. Problématique

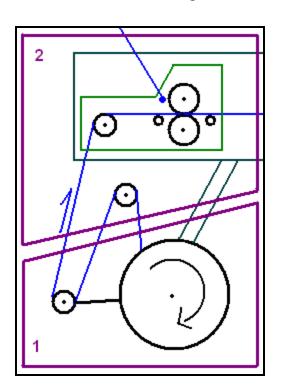
3. Un nouveau cahier des charges machine

√ Fonctionnement de la machine actuelle :

I. Problématique

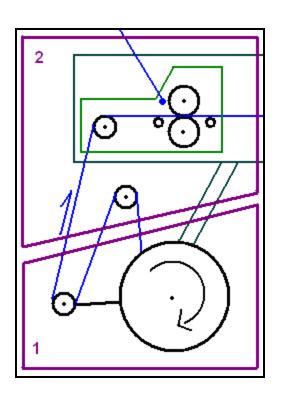
- 3. Un nouveau cahier des charges machine
- ✓ Saisie par l'opérateur des longueurs de lames et des quantités à produire
- ✓ Décompte des quantités restant à produire et affichage
- ✓ Fabrication des lames automatiquement
- ✓ Précision sur la longueur des lames = +/- 0,1mm
- ✓ Montage de bobines jusqu'à 500mm de rayon
- ✓ Réalisation de lames de 250mm à 1000mm
- √ Détection sans contact de l'extrémité de lame et stockage

1. Traduction du cahier des charges


- 2. Machine similaire : société PROSOL
- 3. Les zones clés de la machine
- 4. Solution globale

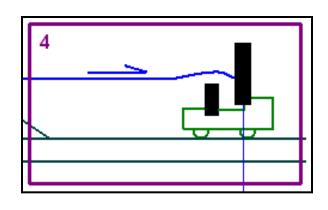
1. Traduction du cahier des charges

✓ Problème de jeu dans le déroulement du feuillard :


- Compenser le jeu dans le feuillard
- Diminuer la tension croissante lors du déroulement feuillard

1. Traduction du cahier des charges

✓ Défauts de mise en forme des lames :


- Réglages permettant de supprimer des défauts qualité sur les lames :
 - Galbage longitudinal
 - Galbage latéral
 - Effet tuile
 - Stries sur les bords de lame

1. Traduction du cahier des charges

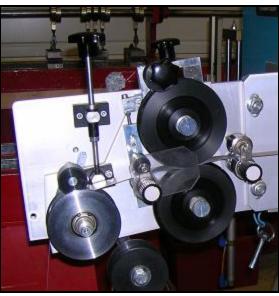
✓ Mesure de la longueur par contact :

- La lame doit conserver sa
 « nervosité » pour une bonne durée de vie
- Supprimer la mesure par contact

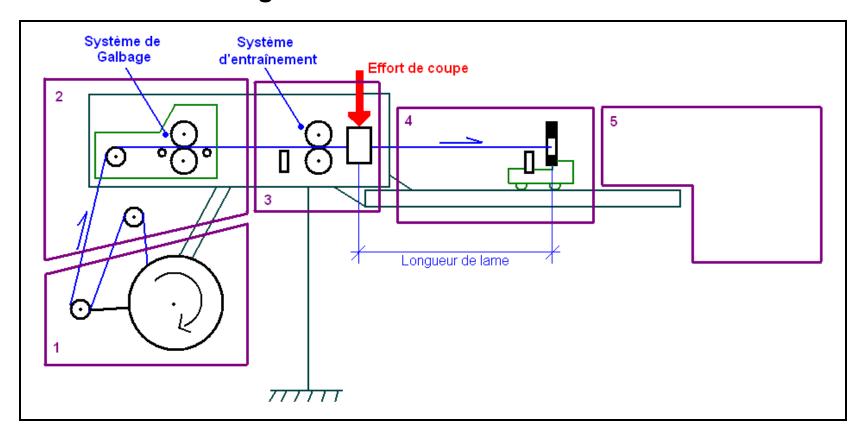
1. Traduction du cahier des charges

✓ Production autonome des lames :

- · Assurer le déroulement du feuillard
- Dégager les lames du système de poinçonnage
- Assurer le stockage des lames

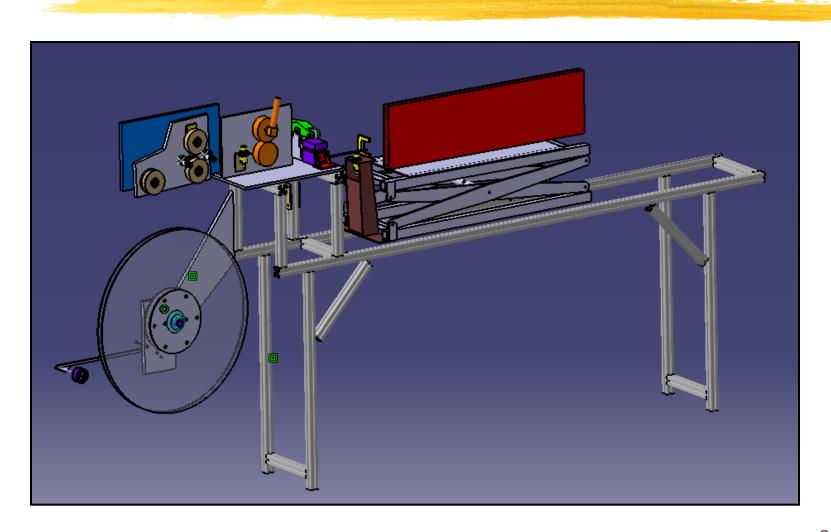

- 1. Cahier des charges
- 2. Machine similaire : société PROSOL
- 3. Les zones clés de la machine
- 4. Solution globale

2. Machine similaire : société PROSOL

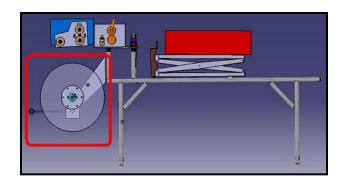

- 1. Cahier des charges
- 2. Machine similaire : société PROSOL
- 3. Les zones clés de la machine
- 4. Solution globale

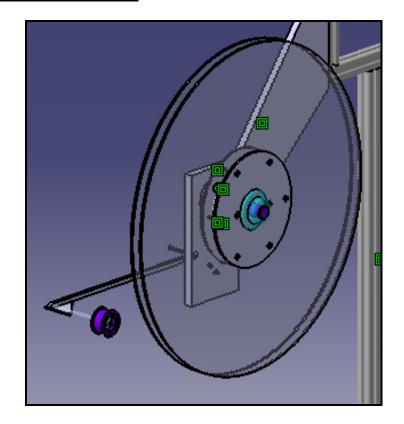
3. Les zones clés de la machine

Partage de la machine en zones d'étude :



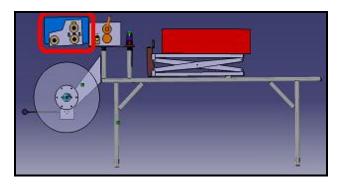
- 1. Cahier des charges
- 2. Machine similaire : société PROSOL
- 3. Les zones clés de la machine
- 4. Solution globale

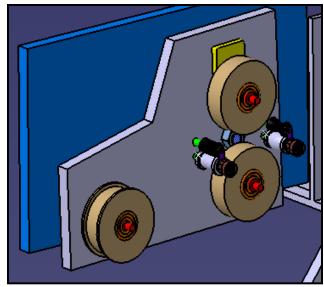


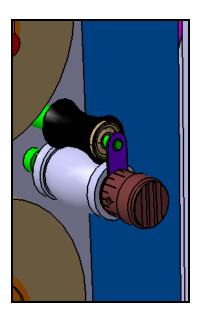


Bloc bobine:

- Pas de feuillard flottant lors de l'arrêt bobine
- Plus d'augmentation progressive de la tension dans le feuillard avec le déroulement

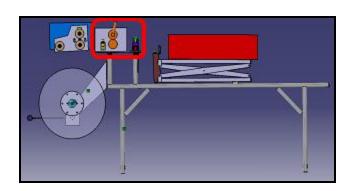


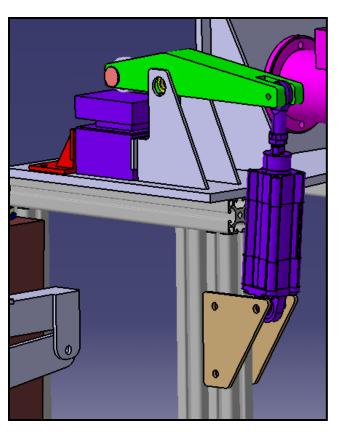



4. Solution globale

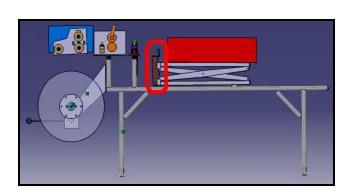
Galbage:

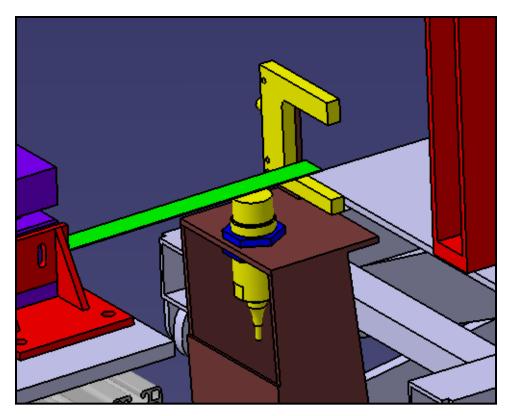
- Compensation possible de tous les défauts de mise en forme de la lame
- Rattrapage facile des jeux lors de la rectification des galets de galbage



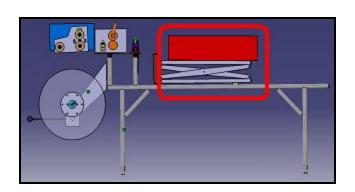


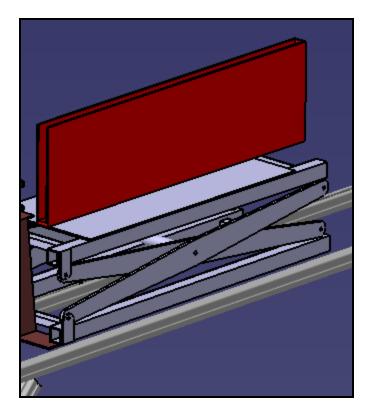
Poinçonnage:


- Utilisation d'un vérin standard
- Réglage facile de la course du poinçon
- Énergie déjà disponible



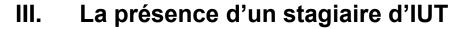
- Fin du risque de pliage du feuillard
- Précision accrue en vitesse lente


Mesure:



- Stockage qui préserve la rigidité des lames
- Bac de stockage qui se déplace verticalement pour aider au stockage
- Tout le stockage sur le chariot de mesure

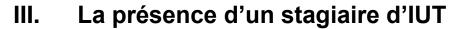
Stockage:



La présence d'un stagiaire d'IUT

1. Présentation du projet

- 2. Recherches sur divers composants
- 3. Conception du bloc bobine

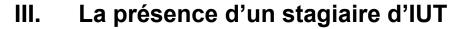

III. La présence d'un stagiaire d'IUT

1. Présentation du projet

- ✓ Présentation du projet et des objectifs
- √ Visite au sein de la société PROSOL
- ✓ Résumé du travail réalisé avec accès à :

- Cahier des charges
- Analyse fonctionnelle
- Photos de la machine VERALAM

- 1. Présentation du projet
- 2. Recherches sur divers composants
- 3. Conception du bloc bobine

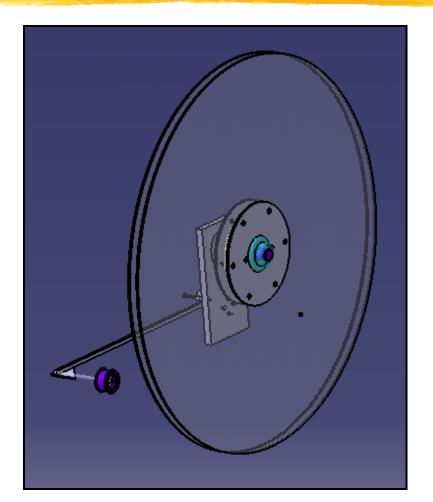


III. La présence d'un stagiaire d'IUT

2. Recherches sur divers composants

- ✓ Idées principales pour la conception déjà arrêtées
- ✓ Plusieurs composants possibles pour une seule fonction
 - Recherche de fournisseurs
 - Étude des caractéristiques des composants
 - Présentation de son analyse et avis personnel

- 1. Présentation du projet
- 2. Recherches sur divers composants
- 3. Conception du bloc bobine



3. Conception du bloc bobine

Getting Things Done

- 1. Gestion des tâches par leur contexte
- 2. Utilisation pour mon projet

III. Getting Things Done

1. Gestion des tâches par leur contexte

- ✓ Méthode développée par David ALLEN
- ✓ La priorité n'est plus un attribut de la tâche
- √ L'esprit est débarrassé des « listes de choses à faire »
 - Recensement des projets
 - Écriture des résultats concrets à produire
 - Traitement de chaque projet (liste des tâches)
 - Suivi et Mise à jour

- 1. Gestion des tâches par leur contexte
- 2. Utilisation pour mon projet

INSA

INSA INSA

III. Getting Things Done

2. Utilisation pour mon projet

Poinçonner		
Fournir l'effort presseur		
	Relever les données dimensionnelles de la chaine cinématique actuelle	Veralam
	Relever les données techniques du moteur électrique actuel	Veralam
	Information sur la vitesse limite nécessaire pour le poinçon	INSA
	Déterminer une énergie pour l'actionneur	INSA
	Choisir un actionneur	INSA

Valider les points critiques (efforts internes, efforts aux paliers,,,)

- ✓ Une feuille Excel par zone machine (Poinçonnage, …)
- ✓ Contexte des actions : INSA de Lyon, VERALAM

Déterminer le type de montage

Concevoir l'implantation

✓ Augmentation du niveau de contrainte en fonction du projet

Bilan